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AN EXTENSION OF THE LAPLACE TRANSFORM
TO SCHWARTZ DISTRIBUTIONS*

By Douglas B. Price
Langley Research Center

SUMMARY

A new characterization of the Laplace transform is developed which extends the
transform to the Schwartz distributions. The class of distributions includes, in addition
to all ordinary functions, the impulse functions and other singular functions which occur
as solutions to ordinary and partial differential equations. The standard theorems on
analyticity, uniqueness, and invertibility of the transform are proved by using the new
characterization as the definition of the Laplace transform. The new definition uses
sequences of linear transformations on the space of distributions in a manner suggested
by a paper of E. Gesztelyi which extended the Laplace transform to another class of gen-
eralized functions, the Mikusinski operators. It is shown that the new sequential defini-
tion of the transform is equivalent to Schwartz' extension of the ordinary Laplace
transform to distributions but, in contrast to Schwartz' definition, does not use the dis-
tributional Fourier transform.

Several theorems are proved concerning the application of exponential shifts and
dilatations to distributions. In particular, the sequence formed by multiplying an integra-
ble distribution and its independent variable by the sequence of positive integers converges
as the integer index approaches infinity to a constant multiple of the delta distribution.

The constant corresponds to the integral of the distribution. It is also proved that such a
sequence can converge only if the original distribution is a distribution of slow growth.

The limit of such a dilatation sequence must always be a linear combination of the delta
distribution and the distribution corresponding to the Cauchy principal value of an improper
integral. Moreover, such dilatation sequences and exponential shifts are used to define the
Laplace transform of the original distribution.

All the results are extended to the n-dimensional case, but proofs are presented only
for those situations that require methods different from their one-dimensional analogs.

*The work reported in this paper is part of a Ph. D. thesis entitled '"On the Laplace
Transform for Distributions," submitted by the author to North Carolina State University,
Raleigh, N.C., in March 1973. Part of the author's work was supported by the U.S. Army
Research Office, Durham, N.C.



INTRODUCTION

The Laplace transform has been an important tool of applied mathematicians and
engineers for many years. The properties of the ordinary Laplace transform have been
well known at least since Widder published his book, "The Laplace Transform," {ref. 1)
in 1941. L. Schwartz (ref. 2) extended the Laplace transform to distributions in 1952,
and there have been many other extensions since then. (For example, see refs. 3 to 6.)
In this report another characterization of the Laplace transform for distributions is given
and is used to prove the standard theorems on analyticity, uniqueness, and invertibility of
the transform,

The work which led to this study was motivated by a paper of E. Gesztelyi on linear
operator transformations (ref. 7). Two classes of transformations he considers are the
dilatations Uj and expontial shifts T ® which are defined for ordinary functions f,
complex numbers p, and positive integers j by

U; (1) = j £Gt)

TP #(t) = e Pt 5(t)

Gesztelyi shows that whenever the sequence Ujf converges (in the sense of Mikusinski
convergence (ref. 8)), the limit is necessarily a complex number. In addition, he proves
that if f is a function which has a Laplace transform at p, then the sequence of functions

{U].T-p f(t)} converges (in the Mikusinski sense) as j — = to the classical Laplace trans-

form of f at p. He then defines the Laplace transform of a Mikusifiski operator x as
the limit (whenever it exists in the sense of Mikusinski convergence) of the sequence

{UjT-px}, and shows that this definition generalizes the previous formulations of the

Laplace transform for Mikusinski operators of G. Doetsch (ref. 9), and V. A. Ditkin and
A. P. Prudnikov (refs, 10 and 11). Since the dilatations U; and shifts TP may be
defined on the space of Schwartz distributions, it was conjectured that there might be

results analogous to Gesztelyi's results in this different setting.

It will be assumed that the reader of this report is familiar with the basic results
concerning distributions and their test functions. These results can be found in any of the
many readily available textbooks on the subject of distributions or generalized functions.
In particular, the books of Zemanian (ref. 3) and Horvéth (ref. 12) contain all the informa-
tion required for a thorough understanding of this report.
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Denote by . (RM) the space of all infinitely differentiable complex-valued func-

tions of the n-dimensional real variable t =14, tz, . . ., t; with compact support. If
j=1i1,d95+ + ., in 1is a multi-index, then ¢(j)(t) or o(t) denotes

amqb(tl, e tn)

atjll at';2 o Btin
where |j|=j; +jg+. . .+]p A sequence {qbk} in .Z(RD), converges to zero in J(RN)

as Kk - = if there is a fixed compact set C containing the support of every ¢p; and

for every multi-index j, {qb}(g} converges to zero uniformlyon C as k -~ .

Denote by ./~ (R the space of all linear transformations f from ./ (R} to the

complex field which are continuous in the sense that if {g‘)k} converges to zero in . (RDY),

then the sequence of complex numbers <f, ¢k> converges to zero as k — «. Although

there are several different ways to assign topologies to < (R1) and determine the set

S (RN} of continuous linear functionals on .2 (RM), no topology will be defined explicitly
here since the notion of sequential continuity is sufficient for the needs of this report.
The elements of .27 (RD) are the distributions defined by L. Schwartz in reference 2. In
the sequel, when the dimension of the space R® is understood, .2 and £ will be
written for .2 (R1) and .Z'(RM), respectively.

Let J(RY (or _J) denote the space of infinitely differentiable complex-valued
functions of t=1ty, 19, . . ., ty which approach zero faster than any power of I/Itl as

{t] = o. Give _J the locally convex topology defined by the family {qk ]} of seminorms
where ’

ay ;(¢) = mﬂ{‘(l + 12)%] ¢.(t)] it € Rn}

for every positive integer k and multi-index j. The space J'of weakly continuous
linear functionals on ./ consists of the tempered distributions or distributions of slow
growth. '

Let &(RM) {or &) denote the space of all infinitely differentiable complex-valued
functions on RM. For each compact set C and each multi-index j, define the seminorm

qC,j by



dc ;(9) = max |8j qb(t)l tec

Equip & with the locally convex topology defined by the family {qc ]} of seminorms,
2

and let &'(RD) or €' denote the space of weakly continuous linear functionals on &,
Then &' is the space of distributions of compact support. It follows from standard
results in the theory of distributions that ./~c J/ C &€, that .Z” is dense in both ./ and
£ with their respective topologies, and that &' < ' c 7.

In the next section the space 4 of bounded infinitely diffierentiable functions and
its subset /50 consisting of those functions in # which converge to zero along with

each derivative as |t} - = are introduced., Distributions in ‘5('), sometimes called
integrable distributions, are characterized as those which satisfy certain a priori bounds

when applied to test functions in .7, and it is shown that each distribution in /56 may be
extended to all of ¥,

In the third section the linear transformations U]- and TP are introduced. It is

shown that if f is in ﬁ('), then {Ujf} converges in .J' as j - to <f, 1>6. Also,

distributions h that are limits of sequences of the form {Ujf} are characterized as

linear combinations of &(t) and p.v. tl This characterization gives an example (p.v. %—)
of a distribution f which is not in ﬁé, but for which the sequence {Ujf} converges in
L', The distribution p.v. tl isin J', however, and it is proved that the sequence {Ujf}

can converge in /7" only if f isin 4"

In the fourth section the Laplace transform of a distribution f is defined by

- - 1 s ] _p
| L{t](p) 50 ]%1_an° <I]T f,% 1)
p

- -p
where ¢(0) # 0. Theorem 3 shows that if T 1 and T 2f are both in .4, then
definition (1) may be used for all complex numbers p with Re p; <Rep<Re Py. This

definition is used to prove the standard properties of analyticity, invertibility, and unique-
ness of the Laplace transform.

Since Schwartz was the first to extend the Laplace transform to distributions, all
other extensions (including those of Zemanian and Ishihara) are compared with his in the



references. It is shown in the fourth section that definition (1) is equivalent to Schwartz's
definition of the transform.

In the fifth section the results of the third and fourth sections are extended to dis-
tributions in . '(R®). The extensions are, for the most part, straightforward; so only
those which require basically new methods in n-dimensions are proved. The appendix
contains the construction of a partition of unity used several places in the text and the
proofs of several lemmas needed in the text.

SYMBOLS AND NOTATION

Due to the theoretical nature of this report, most of the symbols are used in a
generic rather than in a specific sense. For this reason, the symbol list will be divided
into three parts. First, the symbols used generically will be listed in groups according
to their usage. Next, the symbols with specific meaning will be listed alphabetically.
Finally, the mathematical symbols used in the report will be listed.

Generic Symbols

r,t,

cr"r, u; real independent variables, dimension may be Z1
Y

p.q complex independent variables
8,x

Y2 %% test functions

p,®, W

fg.h distributions

F analytic functions of the complex variable p

LIk, indices (nonnegative integers)

m,f,v &

ik multi-indices (n-tuples of nonnegative integers). It is specified in the text

whether j and k have dimension1or n
1,J - index sets for sums or unions
M,N,n positive integer constants



MK

CJd!a,B

a,b

complex constanis

real constants

n-dimensional real constants

compact subsets of RP

small positivé constants

positive numbers used as bounds

domains of definition for Laplace transform

Mikusinski operators

Any of the generic symhbols can have subscript indices or superscript primes to
indicate different elements of the same type.

Spaces:

B(R1)

#'(R)

8,(R"

B o(RM

£ (RT)

Specific Symbols

gpace of infinitely differentiable complex-valued functions of an n-dimensional
real variable, each of whose derivatives is bounded

space of continuous linear functionals from #(RD) to the space of complex
numbers — the dual space of #(RD)

gpace of infinitely differentiable complex-valued functions of an n-dimensional
real variable, each of whose derivatives approaches zero at infinity

space of continuous linear functionals from # O(Rn) to the space of complex
numbers - the dual space of Z,(R™) — sometimes called integrable
distributions

space of infinitely differentiable complex-valued functions of an n-dimensional
real variable, each of which is zero except in a compact subset of RD



s space of continuous linear functionals from .Z(R%) to the space of complex
numbers — the dual space of .Z7(R1) — the Schwartz distributions

cn space of n-tuples of complex numbers

&(RM) space of infinitely differentiable complex-valued functions of an n-dimensional
real variable

&'(RM) space of continuous linear functionals from & (RD) to the space of complex
numbers — the dual space of £(R%) — the compact distributions

L1 space of integrable functions of a real variable

R space of n-tuples of real numbers; when n = 1, this space is denoted R

A(RD) space of infinitely differentiable functions of an n-dimensional real variable,
each of whose derivatives approaches zero faster than every power of the
independent variable — the functions of rapid descent

S'(RY space of continuous linear functionals from J(RF) to the space of complex

numbers — the dual space of J(RD) — the tempered distributions or dis-
tributions of slow growth ‘

Other symbols:

A=S exp dt

1242
F Fourier transform (sometimes denoted by (7))
71 inverse Fourier transform
G{w) function defined in the proof of theorem 12
Im imaginary part of a complex number
L Laplace transform



p.v.

=+ |

distribution defined in example 2

seminorm used to define topology of space -B(RD)
seminorm used to define topology of space J4{RN)
seminorm used to define topology of space & (RT)

real part of a complex number

a linear transformation on the space of distributions - called exponential shift

a linear transformation on the space of distributions — called dilatation
transformation

a partition of unity defined in the appendix
path for integration of analytic function used in proof of theorem 12
delta distribution defined for every test function ¢ by <ﬁ, qb> = ¢(0)

Mathematical Symbols

evaluation of a distribution f at test function ¢ — a complex number.

[~e]
(If f is a locally integrable function, then <f, ¢> =S f(t) oft) dt)
direct product or tensor product

convolution

summation

setofall A suchthat B is true
union

containment — means "is a subset of"



€ containment — means "is an element of"

l | Euclidean norm in R" (or the order of a multi-index j,

li]=3 4z +- - .+jn)
max maximum
sup supremum
1 in addition to the positive integer one, this sometimes represents the func-

tion whose value is always the positive integer one

s {

distribution defined for every test function ¢ by <f(t), ¢>(t)> = <f(t), cp(-t)>;
similarly for g

Hhy

an extension of distribution f — defined in theorem 2

1

Fourier transform of ¢
THE SPACE %
Denote by #(RM) (or, where R™ is understood, by #) the space of all complex-
valued functions of an n-dimensional real variable t =1, tz, .+ ., ty which possess

continuous and bounded partial derivatives of all orders. For each multi-index j, define
the seminorm qj on -4 by

aj(9) = sup {la" o)) t € R"} @

and equip # with the locally convex topology determined by the family of seminorms

{qj}. (For convenience, hereafter, sup f(t) or sup f(t) will denote sup{f(t) tte Rr})
. t

A sequence {qbk} converges in # to a function ¢ with respect to this topology if, and

only if, each derived sequence {8j¢k} converges uniformly to qub.



It is easy to see that 4 C £C &. The subspace 2 is not dense in #, however,
because the constant function 1{t) isin % but cannot be uniformly approximated by
functions in _r, since for any ¢ in &

z1

ag#®) - 169] = sup (o) - 100

For this reason the dual space 5 of ¢ cannot be identified with a subspace of the
space ./ of distributions. In fact Zemanian (ref. 4) demonstrates this condition by
giving an example of a nonzero generalized function in #' whose restriction to A is
the zero distribution. '

Since this work will be confined to the class ./~ of distributions, it is necessary
to consider a subspace -# o of # consisting of those functions in # each of whose
derivatives approach zero as |t| — %, Specifically, a function ¢ is in’ By if, and
only if, ¢ isin 7 and for each multi-index j and each positive number ¢, there is

a compact set Cje such that if t is notin Cje’ then Iaj ¢(t)] <€,

Give -8, the topology induced by # which makes ﬁo a locally convex topolog-

ical vector space. To seethat ./ is dense in %, let {Bk} be a sequence of functions

in .27 such that

6, (®) = 1 (lt[ < k)
ék(t)=0' (]t|>k+1)
sup Gf{j)(t) £ sup B(Ij)(t)l

for every multi-index j. If ¢ is a function in By, then {Eﬂkcp} is a sequence in .

that converges in ﬁo to ¢, which shows that ./ is dense in ’50. Therefore, the
dual space ﬁ; of B, is a subspace of ./ and a distribution f in ’Z?:) is com-

pletely determined by its values on .4". The following theorem is a useful characteriza-
tion of distributions in ﬁ(’).

10



Theorem 1: A distribution f is in ﬁ:) if, and only if, there is
a number K such that

£ K max sup
e ¢

9

for every ¢ in 2.

Proof; To prove that condition 3 implies { belongs to ﬁ('), let {qbk} be a sequence

in ./  that converges to zero in the topology of # o Then sup qbl({j)‘ -0 as k-

for every j and

lim K max sup|¢
ke ’ K t

o] -0

mlg. 4

k_..oo

To show that { can be defined on all 44, let ¢ be a function in B and {qbk} a

¢(J) is

sequence in ./~ that converges in #, to ¢. Then the set /K max sup
jijex ¢

bounded above and so0 {l(f, qhk> l} is alsc bounded above. Since {qbk - ¢ ﬂ} is a sequence

in . that converges to zeroin ¥, as k and ( tend to infinity independently,

Lm (£, ¢ ¢>=0
K, §—co k £

and {<f, ¢k>} is a Cauchy sequence with a finite limit.

Define <f > hm f, qbk>. If {‘pk} is another sequence in 2 that converges

in £, to ¢, then {qbk - "Pk} converges in &, tozero, so <f, ¢> is well defined,

Since /0 is dense in %y, { is extended to all of #, and the extension is clearly

11



£ K max sup
]jléK

¢(ﬂ‘

linear. To see that f is continuous on #, notice that |<f, qb)

holds evenfor ¢ €#, Thus f isin #.

The proof that condition 3 holds if f isin % E) proceeds by contradiction. Sup-
pose that {‘pk} is a sequence in 4, such that for each Kk,

> k max sup

qbf{j)(t)‘ = k max qj(qbk)

o)

e =
and define k=k—n-l;§%;-(-5k—). Then 6, isin By for every k and
i
%)y
() e o) % ezm)
s

so 6, ~0 in o as k- Since f isin g, this statement means that

<f, 9k> -~ 0. However, by the definition of &

oL

k!

This statement contradicts the fact that <f, Bk> - 0, and thus there can be no such
sequence {q&% Therefore, if f is in ﬁ(’), condition 3 holds, and the proof is complete,

Since #, C # and the topology of #, is that induced by ¥, each element of 4’
has a restriction to B, that is, in /5('). The next theorem shows that a converse is also
true, that is, that each element of #_ can be extended to all 7.

Theorem 2: Each distribution { in ﬁ; has a unique extension

~

f in ' with the property that <f, qbk> converges to <f, ci))

12



whenever {cpk} is a uniformly bounded sequence in % that con-

verges to ¢ with respect to the topology induced on A by &.

Proof: If { isin “5(‘), then by theorem 1 there is a number K such that for

every ¥ in 4,

@

8} w(t)l

= K max sup
e

(=]

Let ¢ bein # and suppose I is a finite set of nonnegative integers. Let {7’1}
i=1
be the partition of unity defined in the appendix. Then

: . ()
<, Z Ti% = X max sup|! Z ¥ $|(t) | =K max sup Z(‘:{) Z Y U8y

i€T lilzx ¢ | \ieT ljléK t |kSj\ /i€l

oW |=»

max sup
ilx

= KKMK )" max sup yg{)(t)

kl=x t

Since P is independent of the choice of the set I, lemma 1 given in the appendix implies
that for any finite set 1 of nonnegative integers,

Z <fs Yi¢> = 4P
i1

Therefore
> <f, v, ¢> = 4P
/o i

i=0

[ea)
and the series Z <f, yiqb> converges absolutely.
i=0

13



Define an extension f of f by

G- nd

(= =]
for every ¢ in B. Toseethat f =f on g4, notice that if Y €784, then Z <f, yi‘;,>
is also absolutely convergent, so i=0

EIICTROP R

It remains to be shown that f is continuous on . This continuity will follow
from the second part of the proof which shows that f is continuous even with respect to

weaker topology than the one given in #. To this end, let {¢, } be a uniformly bounded
k

sequence in -5 that converges to zero in the topology of £, and let

o ¢, (t)

PK: max sup sup
ilsg k t
s

where K is the constant defined for f by theorem 1. Let I be a finite set of non-
negative integers and for each i€ I, let kl be a positive integer. Then

f, Z yiqbki = K max sup|8’ z yiq')ki = KK“(KI)“PK max Stlp 3] yo(t)l = P

i€l ij=x t| \i€1 li|=x

Therefore, for every finite subset I of nonnegative integers and every choice of the col-

lection {kl} of positive integers,

2, (%)

icl

<4p (4)

14



It is already known that for each Kk, Z <f y1¢k> converges absolutely. It will
i=0
be shown that this convergence is uniform with respect to k. Let ¢ be a positive num-

ber. Then for each k the absolute convergence of Z <f, yiqbk> guarantees the

i=0

existence of a smallest positive integer Ny such that

s

o0

)

. i:Nk+ 1

€
5 (5)

Suppose that the set {Nk} cannot be bounded above, (Assume Ny, >'1 for every k,

choosing, if necessary, a subsequence of {c{)k} for which this is true)

Since Nj is the smallest positive integer that satisfies relation (5), there must

also be positive integers {Mla} such that for each k

My

RV Y.
12N, S 9

z

€
3 (6)

Pick a sequence of positive integers {Vk} in the following way. Let vy = Nl' Since

M < «, there is an integer Vo such that Nv > M. Similarly, for each Kk, pick v
2

such that va >M, . Thenif M is a positive integer which is larger than 8P' /e,
k-1

inequality (6) guarantees that

< 'yqb > _->4P
k-11—N

15



But this expression is a sum of the form

2

given in expression (4), where the finite set

1=kSM N. Si=M
Yk Yk

and 1«;1 =V for NV £i s MV . The assumption that the set {NQ is unbounded has led
k k

Therefore it may be assumed that there is a positive integer N such
such that N N for every Xk, and so for every Kk,

G

toc a contradiction.

oo

)

i=N+1

(7)

Now q&k converges to zero in the topology of o, and the derivatives of Y; are
uniformly bounded for all i; thus there must be a positive integer N' such that if
k > N', then

N

K max sup o) Z yiqbk <
lil=k b | \i=0

po |

8)

Then, by expressions (7) and (8), as long as k Z N’

00

N %0
<fs ¢k> = i=zo <f, Yi¢k> = |(f, iZO Y1 Pk +i=;+1 <f, yi¢k>

N
£ K max sup|d Z YiPrl | +

lilsK t i=0

16



Therefore lim <f . ¢k> = 0. This statement proves that f is sequentially continuous.
k-

Since A is Hausdorff and the topology of # is defined by a countable family of semi-_
norms, 4 is metrizable. Thus, sequential continuity of f on # guarantees that f
isin #'.

The remarks at the beginning of this section show that there may be more than one
way to extend a distribution f in ﬁé to all of 8. However, ./ is dense in & and,
therefore, .<~ is dense in - with the topology induced by &. Moreover, if ¢ isin

4, there is a uniformly bounded sequence {cpk in 2 that converges to ¢ in this topol-

ogy. Thus, any two extensions of [ which satisfy the property of the theorem must also
be equal on #. That is, there can be only one such extension, and f is unigue. The
proof of theorem 2 is now complete.

In the sequel, whenever a distribution { in '35 is applied to a test function ¢
in ., this will be understood to mean <f, qb>, where f is the particular (unique) exten-
sion of f defined in theorem 2. In particular, the constant functions are in #, soif f{
isin ':«.’?;J, <f, c> = c<f, 1> is defined. If f happens to be a regular distribution in

1,5’5 determined by an integrable function £(t}, then

<f, 1> - S.R“ f(t) dt

For this reascn, distributions in fg'o are frequently called integrable distributions.

There are two more results concerning 13"3 which will be needed in later sections.
Recall that if a and b arein RT, a<b means a; <b; (i=1,2,.. . m)and eat
n
is the function exp Z ajt; |-
i=1

Theorem 3: If { isin #'(RM) and a,b arein RM with a<bp
such that e @l f(t) and e Pt f(t) are both in .4’ then for every
n-dimensional complex number p with a <Rep<b, e Pl () is
in ’Eé.

Proof: Let p be an n-dimensional complex number with a < Re p <b, and let ¢
be a positive number in R™ such that
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eir:min{Repi—ai,bi-Repi: i=1,2,. . .,n}

t et

I At) = ef +e™%, then A(t) e Pt f(t) isin 4" and 1/A(t) isin 4. Also, for every

¢ € Ao, —i—J(t) is in .4, so one may write

<3—pt 1(t), ¢(t> . é(t) e Pt f(t),?@

This expression clearly identifies e'pt f(t) as a continuous linear transformation on Bq
as long as a < Re p < b, s0 the thecrem is proved.

Theorem 4; If f and g arein ‘ﬁ;(R“), then their convolution
can be defined and is also in ’B(')(Rn).

Proof: If f isin .2, then let f denote the distribution defined for every
P .4 by

{, o) = {1, 9-t)

Using the tensor product @ to formally define f * g, gives

-‘ @7 e 0) = (10D, ot + 1) = (€0, (&0, 9t + )
= 10, (&), ot - Yy = 1, (2 * 4)(0)

This string of equalities will be justified and the convolution £ * g will be defined as a
distribution in # o ifitcanbe shownthat g * ¢ isin # when ¢ isin #, and g
is in ’E;), and that & * ¢, converges to zero in # whenever ¢ converges to zero
in #,. To do this, consider

oI (i), ot - )

svt.xp[aj(é * cp)(t)[ - sup CORR( 'f)>

= sup
t

] <g(1‘), Bt + 'r)>

= sup
t

= sup K max sup o1 ¢>(j)(t + 7)|= K max sup
t il 7 lisx ¢

¢,(i+j) (t)’ - PK,j

where K is the constant defined for g by theorem 1.

18



Therefore g * ¢ isin g;andif ¢, converges to zero in B, then

sup|p 3Dy
t

<f *g, <1>> = <f, g * qb> defines f* g as a distribution in 7, and the theorem is

converges to zero, and g * by must converge to zero in #. Thus,

proved.

In the sequel the fact that ’BE) is a subset of 8" will frequently be used. This is
easily seen to be true, since 4 C#, and J is dense in #, with respect to the topol-
ogy of B,. Another way of verifying that ’ﬁb c ' is to compare theorem 1 with the
corresponding result for 4' (Zemanian, ref. 3, p. 111).

THE TRANSFORMATIONS U; AND TP

This section contains definitions and some results concerning two linear transfor-
mations on the space £ '(R). The generalizations to Z'(R") of these results will be
postponed to a later section.

If a>0 in R, define the linear transformation U, on .07 (R) by

{Ua 10), 60)) = (= tat), ) - <f<t), ¢(§)> ©®)

for every distribution f and every test function ¢. It can easily be verified that U,
is continuous and linear on (R).

Another useful transformation on .2 '(R) is defined in the following way: For each
complex number p, let TP be defined by

(1P 509, 0y = (P 100, ott)) (10

for each distribution f and test function ¢. The transformation TP is clearly con-
tinuous and linear on - '(R).

The primary concern of this section is the convergence of the sequences of distri-

butions {Ujf} or {UjT'pf} as j — . The first theorem is a direct corollary to

theorem 2.
Theorem 5: If f isin 75;), then
lim U.f = <f, 1> 5
joo ]

where the limit is taken in .7,
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Proof: Let ¢ bein £ and for each positive integer j let qu(t) = @(—Jt-) Then

?5

sets as j — = to the function ¢(0)1. Also, if k Z 1, the sequence

) {5+

converges uniformly on compact sets to zero as j - ©, Therefore, the uniformly bounded

is also in ./ for each j and the sequence qb]- converges uniformly on compact

sequence qu} in # converges with respect to the topology inducedon # by &, and by

im (o5 6) 1 ()= o 900} - (1) 0.9

theorem 2,

Thus

lim Ujf = <f 1>a

J_..OO

and the proof is complete,

An obvious question to ask is: Does the sequence {U-f} ever converge if f is not
in 7’;-3’ ? The answer is given by demonstrating a distribution f which is not in 15

but for which the sequence {U f} does converge, This is done in the following examples.

Example 1: Let f(t) = - z 8! t -v). ¥ ¢ isin .2, then <f <i>> Z ) (V),
v=1
and the sum is actually finite since ¢ has compact support. In fact, if the support of ¢

is contained in {t: t = K} , then

hm Ui, qb>—11m Z s - vy, ¢O = lim Z ()
jeo ==y

i, S‘: o D) dt = $(K) - #(0) = -6(0) = -5, ¢

Therefore, lim Ujt =

joe
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To see that f is notin %, look at the function ¢(t) =

ﬂ“-tz—“t. I 6(0) is

defined by $(0) = lim ¢(t), then ¢ isin &, since it is infinitely differentiable and
t-0

each derivative approaches zero like as | t|— «. However, <f, cp> is not defined

this case since

o0 o0 (1) oo
~ Z 5(1)(t -, sin 27t\ _ Z sin 27t () = 27V cos 27V - sin 2qV
£y t t 2

v=1 r=1
(=]
_ Z 21 cos 2mv ZTTV Z 1
14
v=1 v=1
ol
and this series does not converge. Thus {f(t} = y 6(1)(t - v} is a distribution not in
Lo
v=1

#, for which the sequence {Ujf} converges.

Example 2: The one-dimensional distribution p.v. 751- is defined by

1 "€ ¢(t ¢(t
év '{’ ¢(t)> g-O . S‘

in

where ¢ is always positive. This distribution is not in 'B(') (since it obviously cannot

be extended to all of 7) but it is invariant under all transformations of the type U,

where a is a positive real number. To see that this condition is true, let ¢ be in £
and lock at
t t
- -€ ¢("‘) 7] (p(_)
o oy oo, 00 -3 B 7 2 (7 - (7
|_ o t e ¢t
[ e
. “a o) € ¢ P(-t) - <P(t
= lim|-\ * ==t - dtf =1
e~0 S‘-e t 51% €~ rg‘S;
13
- hm[ ) 261 (a() dtil -0 (|s(t)l < ltl)
~0|v%
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Thus Ua<p.v. %—) = p.v. tl for every positive real number a. The next theorem charac-

terizes all distributions which are limits in J"(R) of sequences {Ujf} as j — oo,

Theorem 6; If f is a one-dimensional distribution and {Ujf}

converges in <" to a distribution h, then
hit) = ¢y p.v 1, 8(t)
I | b.v. t 2

where Cq and ¢y are constants.

Proof: Since Ujf ~h in &' as j - =, itis easy to see that Ush=h for every
positive real number a. Therefore, if a #0,

1
h(at) = 3 hit) ' (11)
Differentiating equation (11) with respect to a and evaluating the result at the point

a=1, gives th(l)(t) = -h(t). Therefore (t h(t))(l) = 0, and by a familiar result on the
differentiation of distributions (Horvath, ref. 12, p. 327) there is a constant ¢y such that

tht) = ¢, (12)

But for any constant €4, the constant distribution cl(t) satisfies

c,(t) = tey pov. % (13)

Thus, from equations (12) and (13) it follows that

1
t[h(t) - ¢, p.v. -t-] =0

which implies (Horvath, ref. 12, p. 352) that there is a constant ¢y such that

1
h(t) = ¢y D.V. : + Cqy 5(t)

The proof is now complete.
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For the Laplace transform of a distribution to be of any use, it must be analytic in
some region of complex space. The next theorem will show that whenever f is such

that the sequence {UjT"pf} converges for p in a region of the complex plane, then the

limit is the delta distribution multiplied by a function of p. Therefore, whenever the
Laplace transform of £ at p can be defined by using sequences of the form {UjT'pf} s
the constant ¢y in theorem 6 must be zero.

Theorem T7: If there are two complex numbers Py and Py with

- -P
Rep, # Re Py such that {UjT plf} and {UjT zf} both converge
in /- ;: as j — =, then for every complex number p for which

the sequence converges there is a constant e¢(p) such that

lim UTpf—c(p) 5(t)

]...oo

Proof: It may be assumed without loss of generality that p; = 0 and that Py =D
has a real part greater than zero. Let ¢ be a functionin .7 whose support is con-

tained in (0,%), and for every positive integer j let qb t)=e" pjt ¢(t). Clearly, the
sequence {qb (t)} converges to zeroin .0 as j — o,

By theorem 6 it is known that {U T pf} converges to cl(p)p V. tl + cz(p) &(t}; and
since ¢ does not have support at the origin, <6 ¢> 0. Therefore,

]%ifjo <UjT'pf, <i>> = <cl(p)p-V- ,% ¢(t)>
Jim <U TP, ¢>> <U £(t), ¢ PIt ¢>(t)> = lim <U.f, <p.> -
j..oo ]_,oo j_,oo ] ]

by lemma 2 in the appendix since qu -0 in & and {Ujf} converges in .Z~'. Further-

But

more, the support of p.v. tl is the whole real line, and the only way <cl(p)p.v. tl’ qb(t)>
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can equal zero for every ¢ with support contained in (0,«) is for cl(p) to be zero.

Thus lim UjT‘“pf = ¢y (p) 8(1).

j_..oo

Now, let g(t) = T P £(t); let p be a function in ./ with support contained in
(-,0); and for every positive integer j, let .oj(t) = ePit p(t). Then {pj} converges in £

to zero and lemma 2 (see appendix) may be used as before to get

lim <U.f, p> =lim { U.TPg, p) =lim /U.g, p.\ = 0

But %in; Ujf = cl(O)p.v. %—+ cz(O) 6(t) and <6, p> =0, so <cl(0)p.v. tl’ .o(t)> =0. As

before, the only way this can happen for all p in .J with support contained in {-<,0)

is for cl(O) to be zero. Therefore, lim Ujf = c2(0) 8. Thus for every complex num-
j_..oo

ber p where the sequence converges,

lim U.T Pf=c(p) 6
jeee
Corollary 1: If f is a distribution and there exist real numbers

@ and g such that {UjT'pf} converges in .Z" as long as

o < Re p < g, then for each such complex number p,

lim UjT_pf =c{p) &

]-,OO
Corollary 2: If {Ujf} converges in ./ to c; p.v. tl + ¢y O(t)
where cy # 0, then the sequence {UjT'pf} cannot converge in '

as long as Rep = 0.

The purpose of this report is to use sequences of the form {UjT'pf} to define the

Laplace transform of f at p. Therefore, it would be helpful if corollary 1 could be
strengthened by showing that if there are two complex numbers Py Pg such that
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_p _p
{UjT If} and {UjT 2f} both converge, then as long as Re p; <Rep < Re p,,
{UjT-pf} also converges. This statement will follow from the next theorem which shows

that whenever {Ujf} converges in ., then f isin 4.

Theorem 8: If f is a distribution such that the sequence {Ujf}

converges in £ as j— <, then f€ 4.

Proof: By lemma 3, in the appendix there are constants K and r such that if

the support of ¢ is in the interval [—1, l:l, then for every j

<Uf > <Kmax sup
1_r

If ¢ isin £ with support contained in the interval [-k, k], then the support of ¢(kt)

¢‘“‘

is in l:—l, 1:|; thus,

@3-

5 Kk® max sup (p(i) (14)

[qb(kt)]ﬁ) HE:

Now, let {yk} be the partition of unity defined for R in the appendix and let ¢ be

£ K max sup
.|S t

a functionin 3. Then the function yke has support contained in the set
{t:k -1=21tl2k + 1}; thus, by the properties of Yk and inequality (14) it can be seen
that

(1)
= K(k + 1)" max sup [—yke] < KL(k + 1)¥ max sup

|1

|i|§r

(15)

where L= rr! max suply

@ )l Since @ isin .J, there is a constant K' such that
=r
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i{Zr
| (10 1¢P)
for all t. So from expressions (15) and (16}, it follows that
T iy f
f, v 0| S KLK supd 1y icters1) sk — &+ D < _KLK
k r+2 r+2 (k + 1)2

o) (o= P2

o0
as long as k = 3. Therefore the series Z <f, yké converges absclutely.
k=0

Since ¢ was an arbitrary functionin J, f may be extended to a functional on
all of £ by defining for any 6 in .J

<f, e> = Zﬂ <f, 'yk6‘> (1

If f were already in J', then expression (17) would be satisfied for every 6 in .J;
therefore, the definition is consistent. It is easy to see that expression (17) extends f
in a linear and continuous fashion, so that f isin ./', and the proof is complete.

Corollary 3: If there are two complex numbers Py and 'pz

-P -p
with Re p 1 <Re Py such that {UJ.T 1f} and {UjT 2f} both

converge in ./, then whenever Re Py < Re p < Re Py,

{UjT—pf} converges in .2 to <T"pf, 1> 5.

-p =P -P
Proof: If {UjT lf} and {UjT zf} both converge in .Z', then by theorem 8§, T 1

and T zf are both in J'. Also, by theorem 3, TPt isin ‘5; as long as

Re py <Rep <Rep,. Therefore, by theorem 5, lim UjT'pf = <T"pf, 1> 5, and the

J_..DO

corollary is proved.
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THE LAPLACE TRANSFORM

Definition and Standard Results

In this section a new characterization of the Laplace transform for one-dimensional
distributions is given. It will be used to prove the standard theorems concerning analy-
ticity, uniqueness, and invertibility of the transform, and then to show that the new char-
acterization is equivalent to Schwartz' definition of the Laplace transform for distribu-
tions which is given later in this section. However, the development given here is
completely independent of Schwartz' treatment.

It will be said that a distribution f is Laplace transformable if there is an open
interval (o,8) such that whenever p is a complex number with real part in {@,8), T Ps
is a distribution in #,. If (2,0 is the largest such open interval, then the set

Q= {p : Rep e(a,B%

will be called the domain of definition of the Laplace transform for f. The existence of
the set § follows from theorem 3.

If f is a Laplace transformable distribution whose transform has domain of defi-
nition §2, then for any pe 2, the Laplace transform of f at p will be defined by

=1y -p
L[f](p) = M }1_..11;10 <UjT 1, q!> (18)

where ¢ is a test function in .£° with ¢{0) # 0. Theorem 5 guarantees the existence
of the limit in equation (18) and tells what it is. Thus, ancther characterization of the
Laplace transform which is equivalent to equation (18) is

L(i)(p) = <T‘pf, > (19)

By expression (19) it can be seen that L[f] is a complex-valued function of the

complex variable p with domain &. It also follows from expression (19) that the map-
ping L 1is linear. For,if f and g are distributions that are {ransformable at p
and 7 and p are complex numbers, then #nf + ug is Laplace transformable at p and

L[nf + ug] = <1"p[nf + ug], > = n<l"'pf, 1> + u<l"pg, 1> = nLH(p) + uL[g}(p)
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The next theorem shows that if { is Laplace transformable in §, then L[:E:| is an

analytic function of p in .

Theorem 9: If f is a distribution that is Laplace transformable
in £, then L[fJ is analytic in 2 and

& afi = xf 1o

Proof: Suppose that @ ={p: a <Re p < f); pick Py in &, and € in (0,1) such
that €< min{Re By - @, B-Re p[}. If At) = et 4 e-‘c‘t, then 1/x isin .J C %, and

< g, it follows that

HiJo - L{e (e f(t ), 10 = e T 1y, L l;'(P“Po)t -1
P - Py P - Py MnL P - Py

2 [_ - t]_z
Pot 4, <t (PPt & (p po)]

W0 G4

-P
AT 9% isin 8. Also, as long as Ip - P

Alt)e

ji-2

Now, each derivative of is bounded in absolute value by the cor-

zi[pﬂ

]

. _— t2 (p-po)tl
responding derivative of A_(t)- e and is therefore in 4. Thus, as p - Pys
e'(p'po)t i
converges in to — and
IR & Bo o sy 2°
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. L[f](po) . L[t](p) - L[f](po) <L o, -t

B—Pg P =Py K(t)

_ <T-p0[—t f(t)], 1(t> - L[-t f(t)}(po)

This statement completes the proof of theorem 9.

Much of the usefulness of the Laplace transform is a result of the way it treats the
convolution of two distributions. This important property of the transform is given by
the next theorem,

Theorem 10: If f and g are Laplace transformable distribu-
tions such that the domains of their respective transforms have
intersection &, then f* g is Laplace transformable in £ and
for every p in @

i + g = ft]e) L]g)w

Proof: For p in &, T Pf and T Pg are bothin 232); therefore, by theorem 4,

TPt + T Pg=TP(f*g) isin ﬁ’('). Therefore f* g is Laplace transformable at p;
and from expression (19) and the definition of convolution, it can be seen that

Ui * gl = (TP ), D = (TP TP, ) = (TP @ TP 60, 14t ¢ o)
0 T a0, 1010) - (% D - o o

which completes the proof.

No theory of the Laplace transform would be useful without inversion and uniqueness
theorems. The next theorem will have these results as corollaries. In what follows, the
real variable t and the real and imaginary parts of the complex variable p will serve
at various times as independent variables. For this reason the particular independent
variable for a space or an cperation will be indicated by a subscript whenever this pro-
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cedure will avoid ambiguity, for example, <f('r), e-mrr) where f(7) isin '13:) ;- and
T 3

w 1s a parameter.

Theorem 11: If f is a distribution in ’,B(') {» then
- ’

ro .
f(t) = — lim elwt<f('r), e-le> dw (20)
27]- = -T T

where the limit is taken in ,ﬁ’%.

Proof: The integral in expression (20) is well defined since <f('r), eﬁiw7> is a con-

tinuous function of w. Let ¢ bein 2’y and T be a positive real number. Then by
standard theorems on the integration of distributions and test functions with respect to
parameters, it follows that

(T 8 ) an o) =7 (40, 7)), o
- ffﬂﬂ’ e"iw"'>7<ei‘“t, ¢<t>>t dw
G040, o))
- é(ﬂ, § 0, o0, dw>r

r . Ny
- <f(r),§ 7 gie) dg>
-r

where £ =-w and &(&) is the Fourier transform of {t). Clearly, as r — w,

T

T 1 ~
S elé7 ¢(€) d¢ - 27 ¢(7) uniformly with respect to 7, and similarly
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G ier ifT ~ K iET ®
;"kg_re ¢(8) dt =§_ 16)%"" d(e) dg — 21" (7)

ro. ~
finiformly. Thus, the limit in %, of 5 e¥7 $(r)dt as r -~ is 27 ¢(7), which
-r

. means that

Z%Til_‘rg _rr eiwt<f(7), 1w‘r > < th‘ < lw(t- T) t)> dw>
= _!_ﬂ <f('r), 27 ¢(T)>T = <f(t), qb(t)>t

Thus, as distributions,

f(t) = zi lim 1wt<f(‘r) 1w7> dw

T p—oa T
and the theorem is proved.

Corollary 4: If o is a real number such that e 0t f(t) isin

B, ¢» then as distributions,
H

g+HT
£(1) = Lim —— Pt< PT g 1(7)> dp
r—cc 27m Yo-ir T

Proof: If e Ot f(t) isin ﬁo e then as long as Re p = ¢, e Pt f(t) is in 'Bé ts
and ’
T jwt/ -o7 -iwT

f(t) e ¢ f(7), e dw
1T r_..oo -r T
Therefore,

r oHr
(t) = 1 jim o0t 1wt< LT U dw =L 1im pt< “PT g7, 1(7> dp
27 r—oo Vop T 2m r—< vo-ir

which proves the corcllary.



Corollary 5 (inversion theorem): If f is Laplace transformable

in ﬂ={p: a<Rep<%. Then, as long as « < o< 3,

o+ir
£(t) = lim _1_§ ePt L]1](p) dp
r—o 27 Yg-ir

where the limit is taken in ,.ﬁ’{

Corollary 6 (uniqueness theorem): If f and g are Laplace

transformable distributions such that L[f](p) = L[g](p) on some

vertical line in the common domain of the transforms of { and
g, then f=g as distributions.

The next theorem gives sufficient conditions that an analytic function F(p) be the
Laplace transform of a distribution f(t) and characterizes the distribution f.

Theorem 12: If F(p) is analytic for p in

e={o+iw: a<o<p)
and is bounded in © by a polynomial in w (or in [p1), then

Fp) = L[f](p), where the distribution {i(t) is defined by

1 oHr
f(t) = lim —S eP F(p) dp (21)
r—co aTl vYg-jr

for any fixed value of ¢ such that o <o < 3.

Proof: The proof will be accomplished in four steps. It will be shown that (1) £
is a distribution, (2) f is independent of the value of ¢ chosen in expression (21) as

longas @ <o<g, (3) e"Jt f(t) isin ’5(') ¢ as longas a<o0<g and (4) F(p) =
L[f](p) = <T'pf, 1> for every p in Q.

) To see that f is a distribution, let @ <o< 3 andlet ¢ bein £y Then

cr+1r r
<21r1 So ir p) dp, ¢ t)> < eft 1{""tF(U +iw) dew, ¢>(t)>

- ZL_” Srr Flo + iw)zé[e""t qb(-t)](w) dw (22)

t
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Now e %o(-t) is in Ao
since F(0 +iw) is a function bounded by a polynomial in w, itis a regular distribution
in J Therefore, the limit as r ~ = of the last integral in expression {22) is well

so its Fourier transform is certainly in ,J Also,

defined as the value of the regular distribution F{o +iw) at the testing function

g[eqot tb(-t)], which means that

o-1r

G, o) =( 1im (7 P E@) dp, 9)) =2 (F(o + 1), #e ™ 8(-t))()
2‘!71 T —c0 i t 27 @

Clearly, if {q&k} is a sequence that converges to zero in ‘Jt as k — «, then the
sequence {91},-“ c;nk(-t):l} converges to zero in ,wa as k — =; s0 by expression (23),
<f, qbk> -~ 0 also. Thus equation (21) defines f as-a distribution.

(2) To see that f is independent of the choice of o, choose 0y, Oy such that
<0y <0y <f and for every positive real number r,let T, be the closed path in {2
defined by the lines Re p =0y, Rep =0y, and Im p = %1, Smce F(p) is analytic in

), Cauchy's theorem says that S ept F(p) dp = 0. Therefore
I

crl+‘1 +ir -ir i Hir
(M g ap- (2 P rpap= (2 M@ ap s 1T P R a

crl—ir -1r 1—11' crz+1r
(24)
But
< 2 B x ) ap, <P(t> - {72 (o (ouin, 00 a0
o xir 91 ‘ '
= S‘UZ F(o + ir)<e(giir)t, cp(t> do
%1
= 502 Flozir) <eﬂrt, et ci)(t)> do (25)
1
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Now <eﬂr t, et ¢(t)> is a function in 4 r for every value of o0, and the integral (25) is

over a bounded interval; so as r — «, the integral (25) approaches zero. Thus by
expression (24) it can be seen that

Hr Hr
Lm S‘ 1 Pt F(p} dp = lim S 2 ePt F(p) dp
ir g-ir

T =0 =0

as long as a<al<02<,8.

(3) In proving that et f{t) isin ﬁ; ¢ Whenever o <o < g, part (2) of this proof,
the fact that F(o +iw) isin J;J, and lemma 4 in the appendix will be used to get bounds
on{e™% 1(t), (1)) where ¢ is in L7y, It can be seen that

€7 10, o)) -

Lﬂ ‘g: F(o + iw)<ei°"t, qb(t)>t dw

= Kl sup|(1l + wd) g d < 1wt t)>
w
dw

1

- Ky sup| ) (;1)w2k<eiwt, (ity ! ¢(t)>
w t

k=0

T
r .
=Ky sup éo(kl)“wl% <e1°’t, ity 1 cp(t)>t
e e
£ Kyryry’ max supl(el@t, l:(it) 1 qb(t)]
Ifer, ©

t

r (2k+j)
§K1r1r1 max K, max sup (1+t2) l}xt) 1 cp(t)jj

|kl—1" o 2 (26)
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where the last inequality follows from lemma 4. It is clear that the derivative of the
product can be expanded by Leibnitz's rule and the various constants in expression (26}
can be consolidated to get a positive number K and positive integer r which do not
depend on ¢ such that

<e‘frt £(t), ¢(t)>

(1 +12)F ¢y

= K max sup
il ¢

This bound means that e'Ot f(t) is in J; for all ¢ such that @ < o< 3, and so

by theorem 3, e ot f{t) isin &,

ot for all such o.

(4) Part (4) of this proof can be verified by using the first three parts and the
uniqueness theorem for the inverse Fourier transform., However, it will be proved here

by actually showing that <T—pf, 1> =F(p). Let p=0+i7 where a<o<p andlet ¢

be a function in ./ t with ¢{0) =1 and such that the support of ¢ is contained in
(-1, 1), Then by theorem 5,

<e'Pt £(t), 1)) = lim <U e Pt 1), c,b( - lim < Pt ¢(t), ¢ >
]-.CO ]...(XJ

_ (w-7)t
;.1_11;10 Z_wS Flo + iw) (e <1 w= ¢(])> dw

Let F=F,; +F, where the support of F, is containedin {cr +iw: |w - 7| < 1} and

F,=F in {0 +iw: fw- 7| < %} Also choose k 22 large enough to insure that

G(w) = — isin L, that is, an integrable function of w. This can be done

[i(w - T)]

since F(o +iw) is bounded by some polynomial in w for p in 8. Then it foliows
that
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lim — F 1o+ 1w)<1(w It @()>dw lim — G(w <[1(w )] ei(w-ﬂt, ¢(£)> dw
j—oo 2M ] joeo 21 W

]-m( 1) g Glo) <1(w Nt ﬁ; ¢(k)(j_>t i
%),
= lim (1) S‘ S‘ Glw)e“tdw dt

j...no : ]

| ¢(k)(£)
NG L @ AT v
_;Jﬂ;ﬁglel L [clw]® at @

i

Since G(w) is an L1 function, its inverse Fourier transform is certainly bounded
in absolute value, say by P. Therefore, the integrand in expression (27) is bounded in
absolute value., Use of this. bound ;a_nd the qhoice. of the test function ¢ gives the
following: : '

—

[
=
s [+
S
1 N
—_

gt = (2]) sup

o )‘ = 2P sup qb(k)1

H.[

e

Since k Z 2, it can be seen that the limit in expressioﬁ (27) must be zero.

The term that has been neglected is
100 o0 .
lim LS Fo(o +i0) (@ M N go —1im e 1 oV UF (0 +iw)|) at  (28)
]_.oo 2 2 ! j_..oo - ] 2

Now 1[ 2(0 + 1w)] isin ,Jt, soas j — % Fz(cr + 1w):|(t) converges in

Ay to ‘?_I[Fz(cr + iw):l. Also, e 1™ isa regular distribution in ,ﬁt, so the limit in
expression (28) is

36



S\Z e 1Tt - 1[Fz(cr + iw)](t) dt = Fz(c +1i7) = F{o +iT) = F(p)

Thus it has been shown that

<T'"Pf, 1> = F(p)

as long as & <Re p < B, and the proof of theorem 12 is complete.

Comparison With Schwartz' Definition

The Laplace transform has been developed so far without any reference to the
extension of the classical Laplace transform to distributions as defined by Schwartz. He
defines the Laplace transform of a distribution f at p=o0+iw by

L[f](p) = ?'[e_olt f(t)}(w)

In order to see that the development given here is equivalent to that of Schwartz, notice

that by theorem 3 and the fact that ﬁ; C J', a distribution f is Laplace transformable

in the sense of this report if, and only if, e Pt f(t) isin J; for every p in &.
Therefore, the transformable distributions and domains of the transform are the same

for both definitions of the transform. Next, it can be seen that if there is an open interval

-at

(ce, B) such that e " f£{t) in /gé’t whenever ¢ is in (a, 8), then the Fourier transform

of e %Ui{t) is an ordinary function of w defined by

s»f[e"’t f(t)}(w) - <e‘°" £(t), e'i‘”t> (29)

The right-hand side of equation {29) makes sense as the application of a distribution in

B, toa testing function in 4. To see that equation (29) is true, let ¢ be a function in

,jw. Then

<[ t) (@), ¢<w)> -t 1, ¢(t)> < 10, | e o) du>
jﬂ < “Ot iy, eIt cpw)dw <<Otf(t '“"t> ¢(w>
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Thus, if {f is Laplace transformablein £ and p=o0+iw isin £, Schwartz' defini-
tion of the transform gives

L[f:'(p) - 5 [e""" f(t)J(w) - <e'°t f(t), e'i“’t>t = <e'Pt £(t), 1(t)>t - <T“Pf, 1>

and the two definitions of the Laplace transform are equivalent.

Operation-Transform Formulas

Next, some of the standard operation-transform formulas for the distributional
Laplace transform will be derived by using the characterization of the transform given
in equation (18).

Let f be a Laplace transformable distribution whose transform has domain of
definition $ ={p : € <Rep< ﬁ}. Then f(l) is also Laplace transformable in 2.

To compute the transform of f(l), let ¢ be a functionin £ such that ¢(0) =1,
¢'(0) # 0, and let j be a positive integer. Thenif p isin g,

<UjT'pf“’, ¢> =<f“)(t), e 7Pt ¢G_)> - <f(t), pe Pt ¢<.]F.) -Sem ¢(1)<]F_)>

_ p<UjT-pf, ¢> : Jl <UjT'pf, ¢(1)> (30)

As j - =, the second term in the right-hand side of equation (30) converges to zero, and
so it follows from equation (18) that

L[f“)}(p) = lim p(UyT 7?1, ) - pLft)ip)
je
By an inductive argument it is easy to see that for every positive integer k,
11 - o1 D]¢p) - ke (3D

Another operational formula is furnished by theorem 9, which says that
_ _d
L[t 1(t)](p) = & e
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This formula can be extended by induction to get, for every positive integer Kk,

L[tk f(t)](p) = (1K ;‘pk Lff]() (32)

If f is Laplace transformable in §2, then f(t - 7) is transformablein & for

every real number 7, and
<f(t -7, e > < p(t+'r ¢(t + T)>
’ ]

e‘pT<UjT'p £(t), olt + 'r)>

1

<UjT'pf(t -7, ¢(t)>

n

Now, ¢ft+ 7) isin .27; and as long as ¢(7) # 0,

]15?0 e‘pT<UjT'p £(t), Bt + 7)) = ﬁ e PT{TPs, 1y Blt), it + 7

S0

it - o) = e PTLt|w) (33)

If q is a fixed complex number and f is Laplace transformable in £, then
e U §(t) is Laplace transformable in Q' = {p: a-Req<Rep<p-Re a), and for p

in 0,

<UjT"pl:e'qt f(t):|, ¢(t)> - <UjT— (p+Q)f, q5>

Therefore, as long as p isin R,
L[E'qt f(t)}(p) = L{f](e + @) (34)

If k is a fixed positive integer and f is Laplace transformable in £, then ka

is Laplace transformable in Q" ={p: ka <Rep< kf). For p € Q" it can be seen that
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i -G o) o oGy

f, 1 <6, ¢>, which gives the formula

=T

As j — =, this sequence converges to<I‘

L[ka] @ = 1ft] (E) (35)

In order to demonstrate some of the theory developed so far, consider the
distribution

(t) = - Z st - )
=1

Recall that in example 1 it was shown that f is not in »5"_), but that {Ujf} converges in

£ to -5 as j -~ ~. Notice thatif Re p >0, then T Pf isin #,,50 { hasa

[=]

——

Laplace transform defined in £ = {p : Rep> 0}. Also notice that {(t) = -4 Z 5(t - v);

dt
v=1

o
thus, by equation (31) if g(t) = S ot - 1y,

A

v=1

L[f](p) = —pL[g}(p)

for every p in Q.

If A(t) is a functionin # suchthat A(t)=0 for t<0 and A{t) =1 for té%,
then by equation (19) |

-

v=1 v=1 v=0 e’ -1
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Therefore, for p in £,

LH(p) = -pLI:g}(p) =P

1~ep

THE N-DIMENSIONAL LAPLACE TRANSFORM

Definitions
In this section the results proved in the preceding sections for distributions in
LT (R)  will be extended to .2 '(R™). At the beginning of the third section, the linear

transformations U, and TP were defined, where a is a positive number and p is
a complex number. If a>0 in RP (ai >0, i=1,2,.. ., n) define the linear trans-

formation Uy on 4 '(RY) by

<Ua £(t), ¢(t> élaz .. .ap f(altl, e antn), qb(tl, o tn)>
t, t t
1 "2 n

f(tls s ey tn), 95(&—1: a—2: CER Y EH)>

The transformation T P is extended to .Z7'(R1) by the formula

. -Ipt
<T~p f(t)s ¢(t> = <e-p f(t); (P(t> = € ! f(tl: =t tn): qb(tl: R tn)

for each n-dimensional complex number p = (pl’ Ce pn).

Here, as in the third section, the major concern will be sequences of distributions

of the form {UjT_pf}. However, in this section, j will represent a multi-index,
§1=101,095+ « +» jp instead of a positive-integer-valued index. Let j — <« mean that

jp =g = - .y Jp—>,andforeach i and k, 15i=n and 1=k3Zn, j ~
independently of j,. If {fj} is a "sequence' of distributions in ./ '(R") indexed by the

multi-index j, then the statement
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limf.=h

jmoo

means that if ¢ isin .Z(RM) and e >0, then there is a positive integer N such that

b & - o)

The need for being very specific about what is meant by the limit of a sequence
indexed by multi-indices will be demonstrated by the following example. Let the distri-
bution h be defined by

whenever jk 2N forevery k, 1=k Zn, then <€,

2_.2
hit, 1-)=_.E.__7_

(tz + 72)2

Then h(t, 7) is a rational function of t and 7 with a removable singularity at the
origin and can be considered a distribution in .J'(R2). It is easy to see that for every
positive integer k,

h(t, 7) = k2h(kt, k7)
Therefore, if Uph is defined by
U,h(t, 7) = k2h(kt, k7)

then Ltim Ukh = h, However, it is not true that lim Ujh = h, where j represents a
— GO j...oo

multi-index of order 2. To verify this, let jg = (2k, k) for every positive integer k.

Then

. 2,2 .29 2412 - 72
lim U, hit, 7) = lim 2k%h(2kt, k7) = lim 2KZ|—2Kt” - kK778 | _ (422 - 2 # hit, 7)

e ) . . 2|
ko Tk e = a2 122 (@2 4 72

Thus, by the definition of the limit, h does not equal lim U.h.

jaco
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Extensions of Results on U]- and TP

Since the results in this section are n-dimensional analogs of results already
proved, only those for which the one-dimensional proofs do not generalize immediately
will be proved here. In particular, theorem 5 may be generalized to n-dimensions with-
out changing the statement or the proof significantly, so it will be accepted as an
n-dimensional result without another proof.

The next theorem has a corollary which is the analog in n-dimensions of theorem 6
and its converse,

Theorem 13: If h isin .2 (RD), then Ush =h for every pos-
itive multi-index j if, and only if,

211
h(t) = Z c, ® p.v.% © &) G(ti‘) (36)
v=1 iel, i1,

I,C {1,. . .,r}

for some constants c,, 1=v= 2",

Remark: In words, the theorem says that any distribution h in Z'(RY)  which
is invariant under each Uj is a linear combination of 2" terms, each of which is the

tensor product of n one-dimensional distributions of the form G(ti) or p.v. l. For

example, if n = 2, then

h(t) = ¢4 P-V. ﬁ @ p.v. é + €y PV, t_11® G(tz) + Cq b(tl) @ p.v. % + ¢y G(tl) @ G(tz)

Proof of the theorem 13: The proof is by inductionon n. If n =1, then Ujh =h

for every positive multi-index j if, and only if, there is a distribution f such that

h=1lm Ujf. Therefore, the expansion (36) for k follows from theorem 6 in this case.
j..oo

Let k be a positive integer and suppose that the theorem holds when n =k - 1. Let h
be a distribution in .0 '(RY) such that Ujh =h for every positive multi-index j. If Iy

denotes the multi-index (0, 0, . . ., 0, r), where the r is in the kth position, then
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for every positive number r. Equation (37) may be differentiated with respectto r to
get

d d
= R 7 =—nh(t) =0
dr(rh(tl’ rk)) dr ®
or
t oh (; t)=0 38
h(tl""’rk)"'rtk@(l"'"rk)_ (38)

Setting r =1 in equation (38) gives

hit) + —(t)— t h(t)) = (39)
k oty tk( )

Therefore, the distribution te h(t) is independent of ty, and by lemma 6 in the appendix

b

there is a distribution hy in ﬁ"(Rk"l) such that

t, h(t) = hk(tl, Ce tk_1J® l(tk)

Since 1{t; ) =1, p.v. i, it follows that
k k t

0

1
ty {(t) - hk(tl, C e tk-l) @ p.v. f};

By lemma 5 in the appendix, there must exist another distribution h;{ in J’(Rk'l)
such that

h(t) -hk(tl,. e 1)()p ik (1,. ) .,tk_1>®b<tk)

or

h(t) = hk® p.v. i +hy @ G(tk)
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. . . . 1 '
Now, since U].h =h for every multi-index j, hk@ p.v. F}; + hk@ 6(tk) must also
be invariant under each Uj' Therefore, if i- = ]'1, . jk-l’ then

h (X) pov. é + by (%) oty ) = Ujélk@) p.v. i) + Uj(h' ©) 5(‘51;))

K
1 '
=U.—h(:)U- V.= +U-h U, ﬁ(t)
7'k ]kptk]k®3kk

= Us by () pov. i + Uz () 6(tk)

or

1 ! Y _
p.v. H{® (Uj- hy, - hk) + G(tk) ® (Uj~ hy, - hk> =0
This can happen for every multi-index ]- of order k - 1 if, and only if, U- hk = hk

s o '
and Uj—hi{=h;{ for every j. Since hy and h

g Aare both in A '(Rk- 1), the induction
hypothesis says that there must be constants d, and d,, 1Zv= gk-1

, such that
Zk- 1

hk(tl,. . .,tk_l): V; d,, @ p.v.% @ @ 6(ti)

1€Iy

ic-;f_'Iv
IVC {1,. . .,k-]}
and
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Therefore

Zk

n(t) = b (%) p.v. é + hk@ 6(tk) - Z c, @ p.v. tl_l © @ 5(%)

v=1 . .
icl 1§fIL,

k
2

where the sequence {cv} is a rearrangement of the union of the two seguences
1

1

Zk-l zk"‘
and {d'v}l .

@),

Thus for every positive integer n, a representation of the form (36) holds for h

in 4 '(R®) whenever U.h =h for every positive multi-index j.

]

Conversely, if h has a representation of the form (36), then it is easy to see that
U].h =h for every multi-index j. This completes the proof of theorem 13.

The observation that h(t) = lim Uj f(t) for some distribution f in .0 (R® if,
j_..oo

and only if, Ujh =h for every multi-index j gives an important corollary to theorem 13.

Corollary 7: If h isin ./ '(RM), then h =lim Uf for some

jeo

distribution f in .£'(RM) if, and only if, there exist constants

¢,, 1=2v=2" suchthat
21’1
h(t) = Z c, @ p.v.tli- @ @ ﬁ(ti)
v=1

i€l iefIv
Ivc{l,. . .,%

Lemma 2 (see appendix) holds in ./ '(R?) just as in .£"'(R) with virtually no
change in the statement or proof. It will be used in the proof of the following theorem,
which is an extension to n-dimensions of theorem 7.

Theorem 14; If f isin .4 (R™ and there are two complex
numbers Pys Py with Re py# Re Py and a positive integer i,
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Pyt “Pal
1Zi=n such that Uje f(t){ and U].e i(t){ both con-
verge in .2 '(R™ as the multi-index j — =, then for every com-

plex number ¢ for which the sequence converges, there is a

distribution h{g) in .2 '(Rn'l) such that

lim Use 4 i(t) = G(ti) @ h(q) (40)

J—»DO

Proof: It may be assumed, without loss of generality, that Py = 0 and that Py =P
_ pti
has real part greater than zero. Define h{0) = lim U f(t) and h(p) = lim U € f(t).
joo joeoo

Let ¢ be a test function in £ (RN) with support ¢ C {t 2t > (} Then, if j - =,

-pi.t,
clearly the sequence {e 11 q&(t)} converges to zero in ./ (RDY). Therefore, by lemma 2

{see appendix), it follows that

-pt. -pi;t.
lim <U.e P £(t), ¢(t> = lim <U. i(t), e P 1 <p(t> = <h(0), 0> =0
]'_..oo J j_.oo J

But by corollary 7, there are constants c,, 1= v=2" such that

2"
w-yal @ eHOE 6 @
R icl, g1,

Ic{ }

The only way 2 distribution of the form (41) can map every test function with support in

{ t > 0} to zero is for the coefficient of every term in which the factor p.v. é appears

to be zero. Therefore, h(p) = 6( )@ h'(p), where h'(p) isin .2 (Rn 1),

By using a similar argument, just as was done in the one-dimensional case, it can

be shown that h(0} = 5( )@ h'(0) for some distribution h'(0) in .2 ( n= 1). Thus,
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~-qt.
for any g at which the sequence {Uje 1 f(t)} converges, its limit is of the form given

by equation (40), and the theorem is proved.

Corollary 8: If fe< ./'(RM) is such that lim Ujf = h(0) and for

j-bOO

each i, 1Z1i =n, there is a complex p; suchthat Rep; #0

-p.t.
and lim Uje sy = h(pi), then there is a constant ¢ such

j_..no
that
h(0) = ¢ 8(t) = ¢ 6(t1, - tn)
Proof: By theorem 14 it can be seen that for each 1=1,2,. . ., n thereisa

distribution hi(O) in .~ '(Rn' 1) such that h(0) = G(tl) @ h;{0). This can happen only
if h(0) = ¢ 6(t).

Corollary 9: Let £ be an open setin C" with the property
that if p isin €, then the sequence {UjT'pf converges in

<"'(B" to a distribution h(p) as j - «. Then for every p
in @ there is a constant c(p) such that

h(p) = c(p) 5(1;1, ty, « - ) tn)

Proof: Let p bein € andpick e>0 such that the set {q : ]q -p l < e} is also

in Q. Let g{t)=e P i(t). Then lim U

j g(t) =h(p) and i = 1: 2: e I
]_..OO
-%ti
lim U.e t) = hf,
fim U; g(t) (1p)
where, if p= (pl, Pgs -+ o pn), then iP = (pl, Pgs - « « B +-E-, . pn)' Therefore, by

corollary 8 lim Uj g(t) = c{p) 5(t), which completes the proof.

3—.-00
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A generalization of theorem 8 to .Z'(R") does not change the statement of the
theorem significantly; however, it is included here for completeness.

Theorem 15: If f is a distribution such that the sequence {Ujf}
converges in & (R as the multi-index j - =, then f isin
AR,

The proof of theorem 15 differs from that of theorem 8 only in details which are

obvious. In particular, sets of the form {t: |t| = k} must be substituted for intervals

[—k, k], and the value of the constant L introduced in equation (15) must be adjusted.

The statement and proof of lemma 3 (see appendix) do not change at all,
Corollary 10: If there are two n-dimensional complex numbers
. “Py
Py and Py with Re py < Re Py such that UjT f [ and

“Py + y .
U].T £} both converge in . (R") as the multi-index j ~ =,

then whenever p is an n-dimensional complex number with
Re p1<Re p < Re py,

lim UjT'pf = <T'pf, 1> 5

j..co
The proof of corollary 10 follows from theorem 15, theorem 3, and theorem 5.

Extensions of Results on the Laplace Transform

The next topic to consider is the extension of the Laplace transform to distributions
in .2'(R"). Since the definitions and theorems in the preceding section were based on the
work done in previous sections, all of which has now been extended to n-dimensions, the
extensions of the results on the Laplace transform are, for the most part, straightforward.
The n-dimensional results will be stated without proof but the differences caused by going
to 4 '(RD) will be noted.

It will be said that a distribution f in .2 '(R") is Laplace transformable if
there are two numbers a, b in RM such that whenever p is an n-dimensional complex
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number with a <Re p <b, then T Pf isin B (RM). If (a, b) is the largest such

n-dimensional open interval, then the set of n~dimensional complex numbers

Q:{p: a<Rep<b}

will be called the domain of definition of the Laplace transform for f. The existence if:)f
the set & again follows from theorem 3.

The characterizations (18) and (19) of L[f] in one dimension are also valid in
n-dimensions; that is,

-1 P
Lft](p) = S i (o £, ¢ (42)

where pe @ and ¢ isin (R with ¢(0) # 0, and

= <T‘pf, 1> (43)

Formulas (42) and (43) are exactly the same as formulas (18) and (19) but are interpreted
in n-dimensions. Clearly, [f] is a linear complex-valued function of the n-dimensional

complex variable with domain .

Theorem 9 on tﬁe analyticity of the transform may be extended to give

Theorem 16: If fe./'(R") is Laplace transformable in £,
then L[f] is analyticin @ and

o L0 = Lt 100

1

The proof of theorem 16 requires the use of Hartog's theorem (Bochner and Martin
(ref. 13)) which says that a complex-valued function of n complex variables is analytic
if it is analytic in each variable separately with all other variables held constant. The

proof that L[f:l is analytic in each p; separately is essentially the same as the proof of

theorem 9,
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The convolution theorem requires no change.

Theorem 17: I f and g are Laplace transformable distribu-
tions in .Z'(RN) and the domains of their respective transforms
have intersection 2, then f xg is Laplace transformable in £
and for every p in £,

L[f * g}(p) = L-[f](p) L[g](p)

Theorem 18 {inversion theorem): If f is Laplace transformable

in &= {p : a<Rep< l%, then for any fixed o< R® such that

a<g<h,

) 1 o+ir pt
f(t) = im —— L{f|(p) 4 44
(t) dm (zm-)“Scr—ir e D(p) p (44)

where the limit is taken in J{(R") as r -~ in R". The
integral in equation (44) is taken over the subset of n-dimensional

<ri,1§i§1}.

Theorem 19 (uniqueness theorem): If f and g are Laplace
transformable distributions in £ '(R™) such that the domains of

complex space defined by {p : Rep; =0, ‘Im Py

their transforms have intersection 2 =(p: a<Rep < b}, and

there is a fixed o R® with a< a<b such that whenever
Rep=o, Ll:f](p) = Ll:g](p); then f =g as distributions,.

Theorem 20: If F(p) is analytic for p in @ =6) :a<Rep <b}

and is bounded in £ by a polynomial in [wl (or in lpl), then
F(p) = L[f](p) where the distribution { is defined as a limit in

LR by
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1 OHT pt
f(t) = lim nS e F(p) dp (45)
T—% (9yi)" ¥ o-ir

for any fixed o< R" suchthat a<o<h.

Theorem 12, which is the one-dimensional analog of theorem 20, was proved in four
steps, one of which required Cauchy's theorem. An n-dimensional analog of Cauchy's
theorem can be found in Fuks (ref. 14).

The transform formulas developed in the fourth section also have n-dimensional
analogs. For completeness, they are listed here. In the following formulas, k isa

multi-index, t and T arein Rn, p and q are n-dimensional complex numbers.

k., k k k{tko+. . .4k
Recall that % =t;1, 1,2, .. .t " #f=_2 1 S ana R-P1P2 0 Pn
Bpl ¥ 8p2 E RS | apn
L_f(k)](p) = p* L[1](p) (46)
Lk f(t)}( ) = (-1)|k| o L[t](o) (47)
] p) = p
L[tt - 7)) = e Lit](p) (48)
e 1)) = LT + (49
L_ka}(p) = 1[1] (E) (50)

CONCLUDING REMARKS

A new characterization of the Laplace transform for Schwartz distributions is devel-
oped, by use of sequences of linear transformations on the space of distributions. The
standard theorems on analyticity, uniqueness, and invertibility of the transform are proved
by using the new characterization as the definition of the Laplace transform. It is shown
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that this sequential definition is equivalent to Schwartz' extension of the ordinary Laplace
transform to distributions which he obtained from the Fourier transform.

Several theorems concerning dilatation transformations Uy, and exponential shifts
TP are proved. In particular, if f is an integrable distribution, then the sequence
Ujf converges to <f, 1> 6 as j approaches . Also,if f is a distribution such that

Ujf converges, then f must be a tempered distribution.

It is shown that a distribution h which is the limit as j approaches <« ofa
sequence Ujf must be a linear combination of the delta distribution and the distribution

Py

p.v. tl Moreover, if U].T converges for two complex values of p having different

real parts, then its limit is always a multiple of the delta distribution. This multiple
turns out to be the Laplace transform of f at p.

All the results are extended to the n-dimensional case, but proofs are presented
only for those situations that require methods different from their one-dimensional
analogs,

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., January 10, 19'74.
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APPENDIX

AUXILIARY RESULTS

This section contains several lemmas which are used in the first five sections, along
with the construction of a partition of unity for R™ which satisfies certain special prop-

erties. In order to construct such a partition of unity, let A(t) be a function in J'(R)

that satisfies the following properties;

Aft) 20 for every t (A1)
Support of A(t) C [ L l} (A2)
2" 2
At) = A(-t) for every t (A3)
1/2
S' At) dt = 1 (A4)

-1/2

An example of such a function is

1 1 1
— exp t <—)
A Tg? g <| | 2

At) =

where

1/2 1
A= S‘ exp dt
172y o

Let the function p{t) be defined by

p(t) =Sfoo )\(7 +%) - A( - %) dr
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APPENDIX — Continued

Then p <. (R), p(0) =1, pD@y=0 aslongas j=1, p(t)=p(-t) forall t,and
support pC [-1, 1]. Also, if te (0, 1)

oo

t t-1
1 1
1“50 }L(T'E)d'r-i-g-l }\.(T'l'i)d'r
t t
1 1 _
1_§O>\(T-E>df+§o x( —E)dg—l

plt) + p(t - 1)

where £=7+ 1,

Now, for t < R® , define yO(t (l |) Clearly, v, is infinitely differentiable as
long as t# 0. Define yg)(0)=0 for every multi-index j with |j|>0 so that v, is

in £ (RM). For every positive integer k, define the function v, by

vielD) = (| E )

Then the support of 7y, is contained in { k-12 M £k + 1} ;and ¥ isin LR

for every k. Also,if k< |t| £k + 1, then

S 70 = 70 + 7,10 = o{ft] - i) + o(ft] - k- 1) = 1
v=0

[+ «]
since |t| -k isin (0, 1). Therefore {yk}k o is a locally finite partition of unity which

has the additional property that

sup Bj(z 71}) = sup|®
vel t

]

7"0\
t

for any multi-index j and any subset I of nonnegative integers.
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APPENDIX — Continued
Next, a fact about complex numbers which is used in the proof of theorem 2 will be
proved as a lemma.
Lemma 1;: If {n]} is a set of complex numbers with the
jed

property that there is a number P such that for every finite
subset I of J

), m =P
jel
then it is also true that

Z l”j

el

= 4P

for every finite subset I of J.

Proof: BSuppose that there is a finite subset I' of J such that
jel’
Then there must be a subset I'" of 1' such that all the numbers Re ™ with je 1"

> 2P,

Re n.
K

have the same sign and

Z Renj = Z lRen]—|>P

jer” jel

But by the hypothesis of the lemma

IIA

| Rew|s| ) m|=P
Jier jer”

which is a contradiction. Therefore, for every finite subset I of J, z

jel

Re n; | £ 2P,

and similarly Z ‘Iin n| £2P. Thus

jel
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APPENDIX — Continued

Z|”J|‘ Z }Renl\ Z ’Im”1|<4p

jel

and the lemma is proved.

The next lemma concerns sequences of distributions and test functions. The result
is known and in fact is a trivial consequence of the fact that the topology of . ' is that
of uniform convergence on bounded sets in .. Since no topology for .Z"' has been
defined here, the lemma will be proved by modifying a standard proof of the completeness
of ' (Gel’fand and Shilov (ref. 15)).

Lemma 2; If Efk} is a sequence that converges in L' to f and

{cb } is a sequence that converges in /27 to ¢, then the sequence
of complex numbers {fk, ¢>k>} converges to <f, qb>.

Proof; It may be assumed without loss of generality that ¢ is the zero function;

thus, it must be shown that {<fk’ qbk>} converges to zero. If the theorem is not true, then

there must be a positive number ¢ and a subsequence (denoted Ebv} to save notation)

of {qb% such that for every v

(& 93

It may also be assumed (if necessary by picking a subsequence of {qbv}) that

>c (A5)

Do, | < (=1,2..,7-1 (46)

4V

Let ¢, = ZquV for each v and notice that {z,bb} converges to zero in 27 but

f ~ o as ¥
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APPENDIX — Continued

Now a subsequence {wk} of {yby} will be chosen as follows; Choose t,bkl such that
v M

Ciep Vi) ¢ 9y

(i=1,2,. .., v~ 1) have been chosen, pick wk such that
14

<fkj’ Vi v>

> 1. This is possible since

- %, By assuming that v,bk'
]

1
2"

<

(j=1,2,...,1"-1) (A'?)

and

r-1

Equation (A7) can be satisfied since {zpy} - 0 in ./ and equation (A8) can be satisfied

<fv, %)’ - o,

since

[r]
Let = Z n,l/k_. This series clearly converges in ./~ by the way the zpk func-
=1 .
tions were defined. Then

v=1 %0
(e, 9 j:zl (B i)+ (i Y 2 (e, ) .

j=v+l
and by equation (A7) it may be seen that

(=]

)

< z 1. (410)
j=r+1 j

—ve1 287V

<ka, IJJ"‘J'>
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APPENDIX — Continued

From expression (A10), it follows that

+1 (A11)

Z

9 3 Gt 3 ()

and from expression (A8),

<fk » Y >

< ¢’> Z <fk ""’k> <fkv’ lx’k.> = <k ; "bk> Z <k "J’k> (A12)
j=v+1 ) j=1
Combining expressions (All) and (A12) gives
v-1 v-1
i , + 1 Y +1> ; p T 1 + v
<kv ‘f’> e kj> 2 < i, Vi
J_
or
<fkv, ¢> >p-1 (A13)
This relation means that lim [{f " ‘J’>‘ = w_which contradicts the hypothesis that
=00
f=1lm f, Therefore, there can exist no subsequence {qbv} of {qbk} satisfying expres-
-]

sion (A5). This statement completes the proof of lemma 2.

The next lemma is used in the proof of theorem 8,

Lemma 3: If {fk} is a sequence that converges in .2 and C

is a compact set in R, then there is a constant K and a posi-
tive integer r such that for every test function ¢ with sup-~
port contained in C,

£ K max sup

o =5
i

is satisfied for every L.

¢(j)‘ (A14)
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APPENDIX - Continued

Proof: Let fk} be a sequence that converges in .Z', and suppose there are no con-

stants K and r such that expression (Al4) is satisfied for every k. Then for each k
there must be a test function ¢ whose support is contained in C such that

t<fk, qbk> >k max sup qbl({])‘ (A15)
'j|§k
Pk
For each Kk, let py = . Then, if m 1is a positive integer,
k max sup qbl({])‘
il

max sup qbl({j)l

max sup PE)4= [§]=m .
|j[§m k max sup qbl({])‘
i

as long as k= m., Also the support of each P is in X; thus, {pk} converges to zero

in .. Therefore, by lemma 2, {<fk, pk>} converges to zero as k — «, However, by

expression {Al5)

]|

qb{g')]

1

o )|

k max sup
jo t

for every k; therefore, {(fk, pk>} cannot converge to zero, and a contradiction has been

reached. Thus, no such sequence {qﬁk} can exist, and the lemma is proved.

The next lemma establishes bounds for the Fourier transform of functions in .J.
It is used in the proof of theorem 12,
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APPENDIX — Continued

Lemma 4; There exist a constant K and a positive integer r
such that for every ¢ in 4y,

Et, i)

= K max sup
il !

sup
w

1+ qs‘i’(t)] (a16)

Proof: The proof is by contradiction. If expression (A16) cannot be satisfied for

all ¢ in ’Jt by any particular pair of constants K, r, then there must exist sequences 7

{‘bb; in 4; and {wk} in R such that for every Kk,

Q—iwk't, ¢k(-t> <eiwkt, ¢k(t>

‘ibk('t)
For each Kk, let wk(t) =

> k max sup|{1 + tz)k qbg)(t)

i

Then y) —0 in ’Jt as k - o,
k (; '
) o)

k max sup|(1 + t2

e

and since the Fourier transform is a continuous mapping from Jt to .J W’ J’k ~0 in
~iwg t
k

Thus there can be no such sequences {qbk} and {wk}, and there must be a constant

> 1

;(w)l»o also. But ‘J/(wk>|=

,Jw as k -« Therefore sup

for every Kk, which is a contradiction,

K and a positive integer r such that expression (A16) is satisfied for every ¢ in P t
This statement completes the proof of lemma 4.

In the last section, two lemmas which are standard results in .Z'(R") are required
and are stated here for convenience. The proofs of these lemmas are straightforward and
they will not be given here. (See ref. 12, p. 380.)

Lemma 5: If { isin £ '(RM), then tf=0 if, and only if,
t=5t) @ e
where g isin J"(R“'l).
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APPENDIX — Concluded

Lemma 6;: The distribution f in .2 '(R™ is independent of the

variables ty,. . ., tk if, and only if,

f(tl, L tn) - 1(t1, - tk)® g(tk+1, C tn)

where 1{ty, . . ., t) is the function which takes the constant

value 1 on RK and g isin ﬁ’(R“'k).
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